Cross-talk between topological defects in different fields revealed by nematic microfluidics.
نویسندگان
چکیده
Topological defects are singularities in material fields that play a vital role across a range of systems: from cosmic microwave background polarization to superconductors and biological materials. Although topological defects and their mutual interactions have been extensively studied, little is known about the interplay between defects in different fields-especially when they coevolve-within the same physical system. Here, using nematic microfluidics, we study the cross-talk of topological defects in two different material fields-the velocity field and the molecular orientational field. Specifically, we generate hydrodynamic stagnation points of different topological charges at the center of star-shaped microfluidic junctions, which then interact with emergent topological defects in the orientational field of the nematic director. We combine experiments and analytical and numerical calculations to show that a hydrodynamic singularity of a given topological charge can nucleate a nematic defect of equal topological charge and corroborate this by creating [Formula: see text], [Formula: see text], and [Formula: see text] topological defects in four-, six-, and eight-arm junctions. Our work is an attempt toward understanding materials that are governed by distinctly multifield topology, where disparate topology-carrying fields are coupled and concertedly determine the material properties and response.
منابع مشابه
Hydrodynamics of topological defects in nematic liquid crystals.
We show that backflow, the coupling between the order parameter and the velocity fields, has a significant effect on the motion of defects in nematic liquid crystals. In particular, the defect speed can depend strongly on the topological strength in two dimensions and on the sense of rotation of the director about the core in three dimensions.
متن کاملNematic liquid crystal boojums with handles on colloidal handlebodies.
Topological defects that form on surfaces of ordered media, dubbed boojums, are ubiquitous in superfluids, liquid crystals (LCs), Langmuir monolayers, and Bose-Einstein condensates. They determine supercurrents in superfluids, impinge on electrooptical switching in polymer-dispersed LCs, and mediate chemical response at nematic-isotropic fluid interfaces, but the role of surface topology in the...
متن کاملTunable optical vortex arrays from a single nematic topological defect.
We report on the generation of tunable structured light fields endowed with various sets of phase singularities from a single topological defect in a nematic liquid crystal mesophase. The experimental demonstration relies on the use of electric field-induced nonsingular topological defects called "umbilics."
متن کاملCracks and topological defects in lyotropic nematic gels.
We report on the effects of the coupling of nematic order and elasticity in anisotropic lyotropic gels consisting of large nematic domains of surfactant coated single wall carbon nanotubes embedded in a cross-linked N-isopropyl acrylamide polymer matrix. We observe the following striking features: (i) undulations and then cusping of the gel sidewalls, (ii) a nematic director field that evolves ...
متن کاملNematic Liquid-Crystal Colloids
This article provides a concise review of a new state of colloidal matter called nematic liquid-crystal colloids. These colloids are obtained by dispersing microparticles of different shapes in a nematic liquid crystal that acts as a solvent for the dispersed particles. The microparticles induce a local deformation of the liquid crystal, which then generates topological defects and long-range f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 114 29 شماره
صفحات -
تاریخ انتشار 2017